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FIG. 3. Error vs temperature. 
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RAPID solidification processing (RSP) consists of the 
production of materials from the melt, at high rates of 
cooling and freezing, in order to achieve certain desired or 
perhaps unusual characteristics. Many forms of RSP are 
currently in use, one of the most elementary being the ‘splat- 
quenching’ of liquid-metal drops by impact onto a solid 
substrate. A mathematical model of the splat-quench process 
was developed some time ago by Madejski [I,21 and he 
obtained reasonably good agreement with experiment. In 

fact, his model is still finding use [3] as an aid in the interprct- 
ation of experimental splat-quenching data. In this note, we 
make a substantial improvement upon the velocity field used 
by Madejski and demonstrate that the model obtained there- 
with is correspondingly improved. 

Madejski postulated a velocity field for the unsolidified 
portion of the liquid drop as it spreads on the substrate. He 
then required that the time derivative of the mechanical plus 
interfaciai energy of the drop be zero. The velocity field 
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that he assumed was extremely simple, and is expressed in 
cylindrical coordinates as 

Y* = -cz= (1) 

v, = Czr (2) 

where v, and v, are, respectively, the radial and axial com- 
ponents of the velocity field, z is the coordinate measured 
perpendicular to the substrate (he called this coordinate x), 
r is the radial coordinate measured parallel to the substrate, 
and C is a time-dependent (but spatially independent) quan- 
tity which can be expressed in terms of a combination of 
parameters. 

This velocity field satisfies the continuity relation for an 
incompressible fluid, 

v*v = 0, (3) 

and also the requirement that the velocity components be 
zero at the interface (taken as z = 0) between the melt and 
the solidified portion of the drop. However, this field does 
nor satisfy the requirement that 

2 (z = b) = 0 

where the surface z = b is taken as the upper surface of the 
spreading drop. The net effect is essentially that of a shear 
stress being artificially applied to the upper drop surface. 
The consequence of this fact can be demonstrated by con- 
sidering the local volumetric rate ofchange of viscous energy, 
E,,,, which is given by 

I.?“,, = v * pV% (5) 
where p is the viscosity. One can readily show that E,,, is 
equal to 2pC2z2 for this velocity field and thus is positive 
everywhere within the liquid, reflecting the fact that energy 
is effectively being transmitted to the spreading drop at its 
upper surface. 

The following is a velocity field which, as we shall dem- 
onstrate, is an improvement over that given by equations (1) 
and (2) : 

v;=2D 231-b;’ 
c > 

v, = Dr(2zb-z2) (7) 

where D is a time-dependent quantity analogous to C in 
equations (1) and (2). Clearly, the continuity relation. equa- 
tion (3). is still satisfied, as is the condition that both velocity 
components vanish at z = 0. However, this field also satisfies 
equation (4), so that the upper drop surface experiences no 
shear stress for this case. 

Moreover, we can use equation (5) to show that for this 
velocity field, E,,, is given by 

E,,, = -2pD2 
[ 

(2zb-z*)r*+4 
(3 > 

2 -bz2 (b-z) 1 (*I 
which can be shown to be negative everywhere within the 
drop except in a region around the axis of symmetry (the Z- 

axis), the perimeter of which extends out no further, in the 
radial direction, than about 

r-b (9) 

and hence involves a progressively smaller volume of liquid 
as the drop spreads and as solidification progresses. Inte- 
gration of I?,,, over the entire volume, V, of the unsolidified 

I I I 

FIG. 1. Streamlines for the Madejski velocity field (dashed 
curves) and for the improved field (solid curves) within a 
cylindrical volume of liquid having rectangular cross-section, 
as shown. The lower and upper boundaries of this volume 
are the planes z = 0 and z = b, respectively, and the other 
boundary is the surface r = R. Flow is generally directed 

downward and away from the z-axis. 

portion of the drop yields 

s 
E,,,dV= _ $,D2R2b’ 

” 
(10) 

where R is the instantaneous radius of the spreading drop. 
Clearly, this integral is negative as long as 

R > 2b/J5 (11) 

which generally is satisfied, since the radius of the spreading 
drop is usually large compared to its thickness. The fact that 
the integral can be negative (for small enough R) reflects the 
approximate nature of even the improved velocity field. 

Streamlines for the two velocity fields discussed here can 
be easily determined. In particular, for the original Madejski 
model, the streamlines are given by 

rz = constant 

and for the improved velocity field they are 

(12) 

rz(3b -z) ‘/* = constant. (13) 

Some examples for each field are shown in Fig. 1 for a 
cylindrical volume of liquid having a rectangular cross- 
section. In this figure, streamlines for both cases emanate 
from the same set of points along the upper surface of the 
rectangle. One difference between the two cases is that the 
ratio of z-component to r-component of velocity is larger in 
magnitude, at any given point, for the improved field than 
for the Madejski field. This means that transport of flowing 
liquid is directed more predominantly, for the new field, in 
a direction toward the advancing melt/solid interface rather 
than parallel to the interface. The consequence of this fact, 
in terms of overall effects on liquid cooling and solidification, 
can be assessed by applying the energy-balance approach 
used by Madejski. 
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